

F.A. Schreiber, R. Camplani, M. Fortunato, M. Marelli

PERLA: A DECLARATIVE LANGUAGE AND
MIDDLEWARE FOR PERVASIVE SYSTEMS

3rd EuroSSC, Zurich, October 29-31, 2008

Adjunct Proceedings – Posters and Demo Abstracts

pp. 19-20

PERLA: A DECLARATIVE LANGUAGE AND
MIDDLEWARE FOR PERVASIVE SYSTEMS?

Authors F.A. Schreiber, R. Camplani, M. Fortunato, M. Marelli
{schreibe, camplani}@elet.polimi.it

Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano, Italy

Abstract. The system aims at managing, with a unique language, data
sampled from different nodes of a pervasive system, providing them to
the final user. It is composed of three elements: the nodes are heteroge-
neous devices equipped with sensors, which collect data and send them
through the network managed by the middleware; PERLA (PERva-
sive LAnguage) is the SQL like language used to query logical objects,
that are abstractions of the nodes; the middleware is a stack of software
layers providing an implementation of the logical object abstraction. An-
swers to the queries take into account the context the system operates
within, in order to provide the user with data appropriate to different
environmental conditions.

1 The Language

PERLA is a language which allows the user to interact with logical objects by
wrapping physical devices [1]. It is worth to notice that a logical object can
abstract both a single sensor node and a set of devices (e.g. a whole WSN). The
language currently supports three kinds of queries.

Low Level Queries are executed on a single logical object and define how
and when the sampling should be performed, how sampled data should be lo-
cally processed, and which results have to be produced. A clause is provided by
the syntax of these queries to specify the conditions defining the set of logical
objects the query will be instantiated and executed on. A clause has been in-
troduced to support a special operation that allows dynamic changes in the set
of logical objects executing a specific query, based on the results produced by
another running query. We call this operation PILOT JOIN, due to the concep-
tual similarity with standard SQL join operation. In fact, it forces each involved
logical object to start (or stop) the query execution if the joined stream contains
(or not) a record that matches the current value of logical object attributes,
as specified in the condition part of the PILOT JOIN clause. This operation
is the key feature enabling the execution of context dependent queries [2]: the
content of the joined stream is a description of the current environmental situa-
tion, while the join condition defines the context-aware data tailoring the user is
interested in. Moreover, the values of the current matching record can be used
? Work supported by: MIUR Art-Deco and Politecnico di Milano Prometeo projects

in other clauses to adapt the query behavior to the current context. High Level
Queries are very similar to the normal streaming databases ones and they allow
to manage different streams produced by low level queries. Finally, Actuation
Queries are not intended to collect data from a logical object, but rather to
send commands to the logical object they are executed on.

2 The Middleware

The goal of the middleware is to provide an abstraction for each device in terms
of logical objects and to support the execution of PERLA queries. During the
design of the middleware, we strove to make the definition and the addition
of new devices easy. We also tried to minimize the amount of low level code
the user has to write to make the new device recognizable by the middleware.
When a query is submitted to the system, the language parser transforms
it in a suitable format for distribution and execution. High level queries are
executed by the high level query executor which is a streaming database
engine. The process is more complex for low level queries: firstly the logical
objects registry is used to find the set of devices that will be involved in
the query execution. Then, each involved low level query executor starts
sampling its device (through the abstraction provided by the logical object) and
managing sampled data as required by the query. We decided to implement the
whole software, from the logical objects layer up, using JAVA technology. We
also assumed that each logical object (that we can now consider as a JAVA
remote object) is reachable via TCP/IP. If the physical device is connected to
a different network (e.g. a CAN-BUS channel), the correspondent logical object
will be instantiated on the nearest device equipped with both a JAVA Virtual
Machine and a TCP/IP connection. The communication protocol between the
logical object and the physical device is managed by a specific software layer
provided with the middleware. Another important component is a C library
that has been developed to minimize the low level programming effort by the user
to integrate a new technology in the middleware. To reach this goal we defined
the structure of a XML file, containing a full description of a device in terms of
available sensors, measures that can be sampled and packets format. The effort
required to the user to integrate a new technology is limited to the creation of
the XML descriptor and the extension of the C library with the definition of
device specific sampling routines. The logical object wrapping the device is then
automatically and dynamically generated by the middleware.

References

1. Schreiber, F.A., Camplani, R., Fortunato, M., Marelli, M., Pacifici, F.: Perla: A
data language for pervasive systems. In: PerCom, IEEE Computer Society (2008)
282–287

2. Bolchini, C., Curino, C.A., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A.,
Tanca, L.: And what can context do for data? In: Communications of ACM, to
appear

F.A. Schreiber, R. Camplani, M. Fortunato, M. Marelli
Politecnico di Milano, Dipartimento di Elettronica e Informazione,

Milano, Italy

FULL DECLARATIVE SQL-LIKE
HIGH LEVEL LANGUAGE

to query

PERVASIVE SYSTEMS

hiding the complexity
of handling

DIFFERENT TECHNOLOGIES

TARGETS

• RUN-TIME SUPPORT OF HETEROGENEITY:

• WSN nodes
• RFID tags
• PDAs
• AD HOC boards
• …

• SUPPORT OF NON INTELLIGENT DEVICES (RFID TAGs can be queried exactly as WSN nodes)

QUERIES

• LOW LEVEL QUERIES

DEFINE THE BEHAVIOR OF A SINGLE OR OF A GROUP OF DEVICES ABSTRACTED BY
A SINGLE LOGICAL OBJECT

• HIGH LEVEL QUERIES

DEFINE DATA MANIPULATION OVER THE STREAMS COMING FROM LOW LEVEL
QUERIES (~ STREAMING DATABASE)

• ACTUATION QUERIES

SET THE VALUES OF SOME LOGICAL OBJECT ATTRIBUTES

can be queried simultaneously,
with the same language

LOGICAL OBJECTS

• THE LANGUAGE SEMANTICS IS DEFINED ON THE CONCEPT OF LOGICAL OBJECT

• EACH DEVICE IS ABSTRACTED AS A LOGICAL OBJECT:

• ATTRIBUTES (id, temperature, pressure, power level, last sensed RFID reader, …)

• EVENTS (last sensed RFID reader changed, …)

• META-DESCRIPTION (name, data type, … for each attribute)

INSERT INTO STREAM Table (sensorID, temperature)
LOW:

EVERY 10 m
SELECT ID, COUNT(temp, 10 m)

SAMPLING
EVERY 30 s
WHERE temp > 100

EXECUTE IF
powerLevel > 0.2 AND EXISTS (temp)

SAMPLING
SECTION

DATA MANAGEMENT
SECTION

EXECUTION
CONDITIONS

SECTION

Event based
activation

Time based
activation

Event based
sampling

Time based
sampling

Sample the temperature every 30 seconds and, every 10 minutes, report the number of samples
that exceeded a given threshold

INSERT INTO STREAM Table (readerID)
LOW:

EVERY ONE
SELECT lastReaderID

SAMPLING
ON EVENT lastReaderChanged

EXECUTE IF ID = [tag]

SAMPLING
SECTION

DATA MANAGEMENT
SECTION

EXECUTION
CONDITIONS

SECTION

Event based
activation

Time based
activation

Event based
sampling

Time based
sampling

Produce e record whenever the tag with ID [tag] is sensed by a reader in the system

GPS
Logical object wrapping a GPS device

Field Name Data Type Description
ID ID Logical object identifier

linkedBaseStationID ID ID of the base station
mounted over the same tank

locationX FLOAT Sensor location – X coordinate
locationY FLOAT Sensor location – Y coordinate

deviceType STRING Type of device

WSN node
Logical object wrapping a single WSN node equipped

with a temperature sensor
Field Name Data Type Description

ID ID Logical object identifier

baseStationID ID ID of the base station the WSN
node is currently connected to

temp FLOAT Sampled temperature

A COMPLETE QUERY EXAMPLE

There is a set of tanks, containing some temperature sensors. A GPS and a base station are mounted on each tank.

The temperature sensors contained in the tank nearest to a given point P must be sampled every minute.

The distances of the tanks from the point P must be revaluated every hour.

LO
registry

policy

Stream

Query
analyzer

S2S2S1S1

LO1 LO2LO2

S3S3

LO3LO3

policy

Q1

Q2

Q4
Q3

Q5 Q5 Q6 Q6
Q7 Q7

THE GOALS OF THE MIDDLEWARE ARE:

• TO PROVIDE AN ABSTRACTION FOR EACH DEVICE IN
TERMS OF LOGICAL OBJECTS

• TO SUPPORT THE EXECUTION OF PERLA QUERIES MAKING
THE DEFINITION AND THE ADDITION OF THE NEW DEVICES
(AND NEW TECHNOLOGIES) EASY

FIRST PERLA DEPLOYMENT: ROCKFALL MONITORING on San Martino face (Lecco, Italy)

• ACCELEROMETERS AND GEOPHONES ARE USED TO MONITOR INCLINATION AND VIBRATIONS

• NODES ARE DsPic BOARDS (C BASED) ABLE TO DETECT EVENTS
ANALYZING ACCELEROMETERS SIGNALS

• LOCAL COORDINATORS ARE AD-HOC LINUX
BOARDS (JAVA BASED), ABLE TO HOST
LOGICAL OBJECTS

• THE CHANNEL BETWEEN NODES
AND LOGICAL OBJECTS
IS A CAN-BUS

• PERLA PARSER IS LOCATED
ON A PC IN THE REMOTE
CONTROL
CENTER

CHANNEL
(Serial, Socket)

LOGICAL
OBJECT

Physical
device

Attributes Events
Meta

description

PERLA LANGUAGE
interface

• Linux board or PC
• Java virtual machine
• TCP-IP connection to

middleware network

The PILOT JOIN operation

• PILOT JOIN is a special operation that allows dynamic changes in
the set of logical objects executing a specific low level query,
based on the results produced by another running query.

• It forces each involved logical object to start (or stop) the query
execution if the joined stream contains (or not) a record
that matches the current value of logical object attributes, as
specified in the condition part of the PILOT JOIN clause.

• The PILOT JOIN operation is the key feature enabling the execution
of CONTEXT DEPENDENT QUERIES:

• the content of the joined stream is a description of the current
ENVIRONMENTAL SITUATION,

• the join condition defines the CONTEXT-AWARE DATA
TAILORING the user is interested in.

deviceType = "GPS"

Sampling
EVERY 1 h

Temperatures
Insert

EVERY ONE
SAMPLING
EVERY 1 m

Nearest Tanks
(1 h)

Tanks
position

Insert
EVERY ONE

• THE MIDDLEWARE:

• PARSES AND VERIFIES PERLA QUERIES

• DYNAMICALLY GENERATES LOGICAL OBJECTS
CORRESPONDENT TO PHYSICAL DEVICES

• MANAGES THE COMMUNICATION PROTOCOL BETWEEN PHYSICAL DEVICES AND LOGICAL
OBJECTS

• SENDS HIGH LEVEL QUERIES TO THE HIGH LEVEL EXECUTOR AND LOW LEVEL QUERIES
TO LOGICAL OBJECTS

• THE EFFORT REQUIRED TO THE USER TO INTEGRATE A NEW TECHNOLOGY IS LIMITED TO:

• THE CREATION OF AN XML DESCRIPTOR

• THE DEFINITION OF DEVICE SPECIFIC SAMPLING ROUTINES

PERLA MIDDLEWARE

LOx

Sx

User submitted query

Low level query

High level query

Logical object

Physical sensor

Adapter Srv

Channel

FPC 3FPC 1

LLD 1

FPC 2

LLD 3LLD 2

Adapter Cln Adapter ClnAdapter Cln

HLD HLD HLD

Device 1 Device 2 WSN

FPC
Factory

C
,

Ja
va

LLD 1 LLD 3LLD 2

Ja
va

Adapter Cln Adapter ClnAdapter Cln

Channel

HLD HLD HLD

Device 1 Device 2 WSN

C

PERLA
full support

PERLA
partial support

CONTEXT-AWARE
DATA TAILORING

CONTEXT DEFINITION

CREATE STREAM TanksPositions (gpsID ID, linkedBaseStationID ID, distanceFromP FLOAT) AS
LOW:

EVERY ONE
SELECT ID, linkedBaseStationID, dist_from_P(locationX, locationY)
SAMPLING EVERY 1 h
EXECUTE IF deviceType = "GPS"

CREATE SNAPSHOT NearestTank (gpsID ID, linkedBaseStationID ID)
WITH DURATION 1 h AS
HIGH:

SELECT TanksPositions.gpsID, TanksPositions.linkedBaseStationID
FROM TanksPositions (1 h)
WHERE TanksPositions.distanceFromP = MIN(TanksPositions.distanceFromP)

CREATE OUTPUT STREAM Temperatures (sensorID ID, temp FLOAT) AS
LOW:

EVERY ONE
SELECT ID, temp
SAMPLING EVERY 1 m
PILOT JOIN NearestTank ON NearestTank.linkedBaseStationID = baseStationID

This work has been partially supported by: MIUR Art-Deco and Politecnico di Milano Prometeo projects - Poster design in cooperation with Ilaria Bottinelli

CAN BUS

AEU 6

Accelerometer

Geophone
Signal
Event

Physical device

ZigBee

LOCAL COORDINATOR

HLD

LLD 1

HLD

LLD 2

HLD

LLD 3

Device 3
self

description
-

XML

Device 3
self

description
-

XML

Device 1
self

description
-

XML

Device 1
self

description
-

XML

Device 2
self

description
-

XML

Device 2
self

description
-

XML

REMOTE
CONTROL
CENTER

Radio
Bridge

GATEWAY

FPC 3FPC 1 FPC 2

FPC 6FPC 4 FPC 5

AEU 3AEU 1

AEU 2

AEU 5AEU 4

LOCAL COORDINATOR

HLD

LLD 4

HLD

LLD 5

HLD

LLD 6

Device 6
self

description
-

XML

Device 6
self

description
-

XML

Device 4
self

description
-

XML

Device 4
self

description
-

XML

Device 5
self

description
-

XML

Device 5
self

description
-

XML

